
Liouville space theory of sequential quantum processes. II. Application to a system with an

internal reservoir

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 2177

(http://iopscience.iop.org/0305-4470/15/7/027)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 16:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 2177-2189. Printed in Great Britain 
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Australia 
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Abstract. A system consisting of discrete states and continuum states (which form a 
so-called internal reservoir) is treated, illustrating the theory of sequential quantum 
processes in Liouville space developed in the preceding paper. The populations and 
coherences associated with the discrete states satisfy Markovian master equations when 
the interaction matrix elements between discrete and continuum states are significant over 
a broad band of continuum states. The population of a single discrete state decays 
exponentially with time, whilst the population of two coupled discrete states (one only 
coupled to the continuum states) may exhibit Rabi oscillations. For the latter case of two 
coupled discrete levels, the population of particular continuum states approaches a two- 
peak form for long times (Autler-Townes splitting). 

1. Introduction 

In the preceding paper (Dalton 1982) (to be referred to as I) the general theory of 
sequential quantum processes in Liouville space was developed. In this paper we 
illustrate the theory by applying it to a system with an internal reservoir. 

We consider a system with two types of states, which are eigenstates of a certain 
zeroth-order Hamiltonian. The states li) (with energy hi) are discrete states, and 
constitute what we shall refer to as the small system, S. The other states la) (with 
energy ha,)  are continuum states, and can be considered as constituting a large 
quantum system or reservoir, R. Both types of states are of course states of the same 
overall quantum system, as distinct from the case discussed in § 1 of I, where S and 
R were separate quantum systems. In that case R, with its states ] A )  being associated 
with different coordinates from those for the states li) of S, can be referred to as an 
external reservoir. In the present case the states constituting R can be referred to as 
an internal reservoir. 

Such a situation occurs in the case of atomic autoionisation. The states l i )  are the 
discrete atomic states, the states la) are the continuum atomic states, both associated 
with a zeroth-order atomic Hamiltonian, which may, for example, not include certain 
inter-electronic interactions. 

The system is subject to an interaction V, which causes transitions amongst the 
states li), la). This interaction could be due to an external field or could represent 
an internal interaction, for example an inter-electronic interaction that causes auto- 
ionisation. 
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Suppose that at t = O  the only non-zero elements of the density operator p are 

(i) the populations pii  and coherences p i i ( i  Z j )  associated with system states as a 

(ii) the populations puu of continuum states la). 
The basic quantities required are introduced in 0 2 .  In 0 3  we determine the 

system populations and coherences, specialising the results to two cases, (i) a single 
discrete state coupled to the continuum, (ii) two coupled discrete states, one also 
coupled to the continuum. The population of the reservoir states is dealt with in 0 4, 
for the special case just referred to. 

between various system states li), lj). The problem is to calculate: 

function of time, 

2. Basic quantities for the system 

The Hamiltonian is 

where Hs, HR, VSR are the system Hamiltonian, the reservoir Hamiltonian and the 
system-reservoir interaction respectively. These are defined via 

( 2 a )  Hs = Hso + Vs 

Hso = hwili)(il 
i 

The quantities huii, huuB, huui, hvia are matrix elements of V between the relevant 
states. Only that part of V that causes system-reservoir transitions has been included 
in VSR, the remaining parts of V are included in Hs or HR. In terms of the general 
theory (see I) the unperturbed Hamiltonian K is the sum of the system and reservoir 
Hamiltonians. 

We introduce Hermitian projectors 9,9 in state vector space via 
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SvsRB = E  h u a i / a ) ( i l .  
ia 

The Hermitian projectors A,, A I ,  A2 are defined in Liouville space via 

A0 = $3' x P' 

A 1 = B x 9 ' + 9 x 9 t  

A2 = S x S '. 
It is then found that 

The conditions given in equations ( 5 )  and (7) of I are also satisfied. In this case ho 
spans the subspace with basis vectors lij')), ill spans the subspace with basis vectors 
lis')), (ai')) and A2 spans the subspace with basis vectors lap')). 

Initially the system is in a mixed system state given by 

I/J(o))) = 1 Pij(O)Ii j+)).  
i j  

The conditions given in equation (8) of I are thus satisfied. 

(7) 
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The unperturbed Liouville operator is given as in equation (9b) of I, with K = 
Hs+HR,  and can be written as X =  X s + X R  in an obvious notation. The interaction 
Liouville operator V is given as in equation (9c) of I, with V = VSR. 

It is then easily shown that the conditions given in equations (10) and (43) of I 
are satisfied. We find that 

A0 VAo = Ai VAi= A2VA2 = 0 ( 8 a )  

AoVA2= A2VAo=O (8b)  

A2Xs = XsA2 = 0 ( 8 ~ )  

AoXR = XR A0 = 0. ( 8 4  

The only non-zero quantities of the form AiVAi are AoVAl, A1 VA2, Al VAC,, 
A2VA, .  Their non-zero matrix elements in Liouville space can be calculated using 
equations (Sc), (A1.9), (Al.11) of I and equation (2g) and are given by 

((ijtlAoVAl/iat)) = - h v c  (9a) 

( ( j i t~AoVAl~ai t ) )  = hvia (96) 

((iatJAIVAoIijt)) = -hvi, (9c) 

( (a i t (Al  VAoljit)) = h v g  ( 9 4  

((aitlAlVA21aPt)) = +vi", (9e) 

((ia t (Al  VA&a ')) = hip (9f 1 
((aptlA2VAllait)) = -hvip (9g) 

((PaflA2VAlliat))= h v z .  (9h) 

3. System populations and coherences 

3.1. General case 

The system populations and coherences can be obtained from the master equation 
(28) of I. To see whether the Markoff approximation applies we need to consider 
matrix elements ((i j t(AoRO(~)Ao~Zm ')) of the relaxation operator, which can be obtained 
as inverse Laplace transforms of the matrix elements ((ijtlAo5f!o(ho)Aollm ')), using 
equation (22a) of I. 

We make the weak-coupling approximation of replacing 2 by X in the expression 
(18) (see I) for 9.'. Using equations (6e) ,  (8a) ,  (U), (8c)  and equations (loa), (5b) ,  
(5a) of I we find that 

A o % ~ ( z ) A o = A o ~ L " A ~ A ~ ( z  -A,XA1 - A ~ X R ~ ~ ) - ' A ~ A ~ V A O .  (10) 

Ai(.? - A ~ X A ~ - A ~ X R ~ ~ ) - ' ~ ~ ~ ~ ( Z  - AiXA1)Ai = Ai. 

Similarly to the derivation of equation (A2.11) in I we can show that 

(11) 

The required matrix elements of AI(Z - AIXA1 - A2XRA2)-1A1 can be obtained as the 
inverse of the matrix for Al(z - A1XAl)Ai. 
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Using equation (66), (2a ) - (2 f )  and equations (9b ) ,  ( A l . l l b )  of I and with w,b = 
wa - O b ,  we find that 

((ai ' I A 1 (2 - A 1 iM 1 IPi ')) 
= zs,psij -((*i'pq@j+)) 

((ia'lAi(z -AiXAi)AiIjP'))= (Z -hwi,)S,pSij+h~~pSij -h~i,&p. ( 1 2 4  

We now make the further approximation of neglecting the effect of the matrix 
elements uii, U,@. This amounts to calculating the matrix elements of Ao.930Ao correct 
to the zeroth order in these quantities. With this approximation we find that the only 
non-zero matrix elements of Al(z - AIXAl  - AZXRA2)-' are given by 

((ak'lAl(z - A,X& -A2XRA2)-'Allakt)) = (Z - hwUk)-l 

((katlAl(z -AlXAl  -A2XRAZ)-lAllkat))= (Z -hwka)- l .  

( 1 3 ~ )  

(136)  

Hence using equations ( l o ) ,  (13 ) ,  ( 9 a ) ,  (96 ) ,  ( 9 c )  and ( 9 4  we obtain the result 

Using equation ( 2 2 a )  of I and on completing the contour in the lower half-plane 
we then get 

((ij I AoR '( 7 ) no1 Im )) 

= -ih C [UiuuTaSjm exp(-iw,,~) + zi,*,umuSil exp(-iwi,~)] 7 3 0 .  
U 

(15 )  

We can now examine conditions under which the Markoff approximation can be 
made. Suppose the matrix elements uiu are similar in size over a range of continuum 
angular frequencies. We could then model uiu in the form 

uiu = 
(U, -U,)  + iA ,  ' 

In this equation U is an effective strength factor, wc a suitable frequency in the middle 
of the continuum, ii, an effective bandwidth for the matrix elements via (A, s wc).  

Writing X u  in the form 5 dWup(wu), where p(wu) is the density of continuum states 
(per unit angular frequency), a straightforward evaluation of a typical matrix element 
for A ~ R ' ( T ) A ~  gives 

(17 )  
Thus we see that the correlation time is of order l / A c ,  which can be quite small. 

Hence the Markoff approximation can be valid when the coupling matrix element 
from the discrete states to the continuum states is spread over a wide band of continuum 
states. 

((ij'lAoR0(7)Aollm ')) - -idiu2hg(oc) exp(-iw,,~) exp(-h,.r). 
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Assuming the Markoff approximation is valid we next evaluate the Markovian 
relaxation matrix element ((ijtlI"llmt)), where r' is given by equation (49) of I. 

In evaluating the matrix elements of Ao(hw -ihs -X)-'A0 we use an analogous 
technique to the derivation of equations (12), (13) and make the similar approximation 
of neglecting the effect of the matrix elements uiP We find that the only non-zero 
matrix elements are given as 

((lmtlAo(hw-ihs -X)-'Aollmt))= (hw -ihs --holm)-'.  (18) 

The contour integral in equation (49) of I is completed in the upper half-plane 
and we find that 

Substituting from equation (14) we obtain the weak-coupling, zeroth-order 
expression (20) for the Markovian relaxation matrix elements. 

= r i j , l m .  Gob) 

Taking the scalar product with lij')) of each side of the Markovian master equation 
(48) of I, using equations (AlSf) ,  (A l . l l b ) ,  (9b)  of I and equations (l), (2) and (6a) 
we find that 

Finally, to see whether the Markoff approximation is valid we calculate a typical 
relaxation matrix element I'ij,lm in terms of our model for the uia, as given by equation 
(16). We find that 

(22) 

The condition rr,<< 1 which leads to the Markoff approximation being valid then 

2 
r i j . i m  - ~ ( w c ) .  

becomes 

rrv2p(w,)/Ac<< 1. (23) 

This condition may often easily be satisfied. For example in autoionisation 
27ru2p(oC), which is the Fermi golden rule rate constant for autoionisation (see below), 
may be about 1012s-1 or less. On the other hand A, may be of the order 10'' s-l, 

so that the left-hand side of equation (23) is of the order 

3.2. Single discrete state coupled to continuum states 

In this case, using equation (7) and including any non-zero ut1 as part of 01 we have 
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The single non-zero Markovian relaxation matrix element can be obtained from 
equation (20a) .  We find that 

E l  rll.ll = - 2 ~  C tVla12 2 
a ut1 + E  

2 
= -2 .rrP (Ol>l V l a  I U, =o, 

= -y1. 

y1 is the Fermi golden rule rate constant for bound to continuum transitions. 
The population of the single level pll  is then obtained from equation (21)  and we 

have 
b 1 1 =  -71p11. (26) 

This describes the expected exponential decay of the population with a rate constant 
Y1. 

3.3. Two coupled discrete states, one also coupled to continuum states 

Assuming that the system is initially in state Il), that state 12) only is coupled to the 
continuum states and that any non-zero ul l  or v~~ have been included in 01,02 

respectively, we then have 

P12(0) = PZl(0) = Pz2(0) = 0. ( 2 7 4  
The non-zero Markovian relaxation matrix elements can be obtained from equation 

(20a)  and are given by 
2 

r22.22 = - 2 7 d ~ 2 ) l V 2 a l w , = w 2  

= -y2 

W e )  

(28f 1 

1 = -iA12 - 5y2 
1 r21,21 = iA12 - 2 ~ 2 .  

y2 is the Fermi golden rule rate constant for transition from state 12) to the continuum 
states. A12 is a shift of the zeroth-order transition frequency o12, as can be seen from 
its location in equations (29).  

The populations and coherences of the two states can then be obtained from 
equation (21) ,  and we have 

,&I= i ~ ~ 2 ~ 1 2 - i u 1 2 ~ 2 1  (29a)  

b12  = - i ( o l ~ + A 1 2 - ~ ~ 2 ) ~ 1 2 - i u 1 2 ( ~ 2 2 - ~ 1 1 )  (29b)  
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In the case where w12 + A12 is small (resonance), then if the coupling matrix element 
u12 is large compared with the decay constant y2 ,  the populations p11,p22 exhibit 
damped oscillatory behaviour (Rabi oscillations). Results equivalent to equation (30)  
have been obtained by Knight (1977) in the case of resonant two-photon ionisation, 
which is a specific example of the situation dealt with here. 

4. Population of reservoir states 

4.1. Case of two coupled discrete states, one also coupled to continuum states 

Using equations (AlSf), (11) of I and equations (6c) ,  (7) the population of the 
continuum state la) is given by 

PP,(t) = ((aatlp)) 

= ((aa tIA21~)) 

Since case B applies, equation (40)  in the general theory paper I then gives 

((aa 'lA29Aolijt)) = ((aa tlA292A2A2VA1A1 9'A1A1 V1AoAo90Aolijt)). (32)  

Rather than evaluate the population ppu (t) in general, we shall confine ourselves 
to the case considered in 0 3.3, and also examine the population puu(t)  only in the 
regime where t is large. We thus need only consider equation (32)  for the case i = j = 1 .  

We first consider A292A2,  and hence A2iB2A2. Using equations @ a ) ,  (6g) ,  (8c)  
we find that 

A ~ ~ B ~ ( z ) A ~  = o (33a)  

In calculating the non-zero matrix elements of Az(z -7l)-'A2 we make the same 
approximation used earlier of neglecting the contributions from the uUB terms. We 
then find that the non-zero matrix elements of A292A2 are 

( ( a p t l ~ 2 9 2 ( ~ ) ~ Z l a p t ) )  = (Z -hwuB)-l .  (34) 



Sequential quantum processes: II 2185 

Using equation (34), the non-zero matrix elements of A2YA1 from equations (9g), 
(9h)  and (27b), we obtain 

((aa t lA2%(~ )A011 1 ')) = (h /~ ) ( -u2 , ( (a2~ lAi$ ' (~ )AiAi  " y . A o A ~ % ~ ( ~ ) A o l l  It)) 

+ U (( 2a I A 1 3' ( z )A 1 A 1 YAo A0 go( z )A01 1 1 '))). (35) 

We next consider Al%'Al and hence Al%!'Ai. Using equation (45) of I and 
equation @a),  and making the same approximation for the matrix elements of A2%2A2 
as involved in equation (34), we find that 

Using equations (9e), ( S f ) ,  (9g), (9h)  and (276) for the non-zero matrix elements 
of A1VA2 and A2VA1 we find the following non-zero matrix elements of A1B1(z)Al 

From an equation analogous to (A2.11) of I we see that the matrix elements of 
Al%lAl are obtained by taking the inverse of the matrix for Al(z -X-A1%!l (~ )Al )Al .  
Using equations (37), (l),  (2a)-(2e) and equations (9b) ,  ( A l . l l b )  of I we find that 

((ai ' /Ai ( 2  - X - A i 9  ' ( 2  )Ai)Ai IPjt)) 

To proceed further we make three more approximations. Firstly we neglect all 
matrix elements U,@, as in earlier approximations. Secondly, we ignore the off-diagonal 
matrix elements given by equations (38b) and (38c). This can be justified by showing 
that the corrections due to their presence are of higher order. Thirdly, we make the 
so-called pole approximation in which the z dependence of the sums over S in 
equations (37a) and (37d) is ignored and z replaced by the values houi+ihe and 
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hwia + i h ~  respectively. These correspond to values of z on the contour c closest to 
the poles of the matrix elements of Al@Al.  

The validity of the pole approximation can be established in several ways. Firstly, 
direct calculations of the sums over S occurring in equations (37a), (37c) for specific 
models of the matrix elements vzS do, in fact, produce results which show only a weak 
dependence on z. Davis (1980) has evaluated such expressions for electric dipole 
matrix elements between bound and continuum states in hydrogenic atoms. Secondly, 
the expressions (37a), (374 are essentially the same as the matrix elements of 
Ao%o(~)ho  given in equations (14). These are weakly dependent on z in the situation 
considered here in which the Markoff approximation applies, since the Laplace 
transform of the latter expressions yields the matrix elements of the relaxation 
operator, and these decay to zero over very short time scales T ~ .  Thus, at the 
fundamental level, the pole approximation is implied by the Markoff approximation 
and vice versa. 

Using the pole approximation and equation (28) we then have 

Using the last three approximations and substituting equations 
equations (38) we see that 

(396) 

(39) and (27u) into 

The quantity Lia2 is defined as 

(;io2=wa2+A12. (41) 
E, is the n x n unit matrix. 

The matrix elements of Al$'Al are then determined from equations (40). Sub- 
stituting the result into equation (39 ,  then using the non-zero matrix elements of 
A1 VAo from equations (9c) and ( 9 4 ,  we obtain the following results for the resolvent 
matrix element 

((&a tIh2Whw)AoIllt) 

(42) 

(43) 

The quantity f a  ( U )  is defined as 
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Next we need to determine the matrix elements of Ao(80A0 and hence of Ao%!~Ao. 
This calculation has been done in 0 3.1, within certain approximations discussed 
therein, and yields the result given in equation (14). 

From equations (Sd) ,  ( lb) ,  (2a), (2b), (2c) and equations (A2.11), (9b), (Al . l lb)  
of I we find that 

Substituting for the matrix elements of AoB'OAO from equation (14), using the pole 
approximation and equation (27a), we find that 

Gi' lAogo(hw M o l  Im t)))Matrix 

-1 
llt 12' 21t 22' 

-012 

0 
(45) 

w+012++iy2 UT2 
* --v 12 012 

The quantity GI2  is defined as 

0 1 2  = ~ 1 2  + A12. (46) 

We note that the matrix given in equation (45) is exactly that involved in obtaining 
the Laplace transform solution of the master equations (29). 

Inverting the last matrix we find that 

The quantity g ( w )  is defined as 
2 5  2 

= w4+w3(2iyz) -U (sy2+W:2 +4(-vl2I2) - i y ~ w ( ~ y : + 0 : ~ + 4 ( ~ ~ ~ 1 ~ ) +  y : l ~ ~ ~ 1 ~ .  (48) 

g ( w )  is similar to the Torrey polynomial. 

the expression (42) we find that 
Substituting the results for the matrix elements of Ao(80Ao from equation (47) into 

( ( ~ ~ ' l A 2 ~ ( f i w M o l l  17) 
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We note that there is a l / w  factor in the last expression, which shows that p,,(t) 
will approach a finite value as t becomes large. 

The population of the continuum state (a) is then calculated by substituting from 
equation (49) into equation (31), noting that pl1(0) = 1 and all other pi j (0 )  are zero. 
The integral is evaluated by completing the contour in the lower half-plane. For 
large t the only contribution is from the pole w = 0, and we find for t large that 

The important w, dependence is contained in the denominator rather than in the 
weakly varying quantity uZu. In general, a two-peak result can occur (Autler-Townes 
splitting), for example when the coupling term u12 becomes large in near resonance 
conditions (G12 = 0). 

A result analogous to that in equation (50) has been obtained by Knight (1977) 
in discussing the spectrum of photoelectrons emitted in two-photon resonant ionisa- 
tion. This situation is a special case of that considered here. 

Finally, in order to give a specific example, the coupled master equations for Ai\p)), 
i # 0, are given by equation (42) of I as 

Within the weak-coupling theory used there it can easily be shown that the non-zero 
matrix elements of the corresponding line shift operators are 
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( ( (ypt1A2~'(h~)Al l ipt ) )  = hv:. (52j )  

The relevant matrix elements of AIR'(T)AO and A 2 R 1 ( ~ ) A o  can then be obtained via 
equation (20) of I. The latter expressions will not be written down here. 

From results (52a)- (52h)  it can be seen that the non-zero matrix elements of 
A I R O ( ~ ) A o  decay to zero with a timescale of the order y;', whereas from equations 
( 5 2 i ) ,  ( 5 2 j )  those of A2R'(.r)Al have a Dirac delta function T dependence. Hence 
Al Ip)) satisfies a non-Markovian master equation, whilst A21p)) satisfies a Markovian 
master equation, which illustrates the general point that some Ailp)) in a given problem 
may satisfy the Markoff approximation whilst other Ailp))  may not. 

Acknowledgments 

I should like to thank Professor J Eberly and Dr P L Knight for helpful discussions 
and for kindly reading the manuscript. I should also like to acknowledge the hospitality 
of the Optics Sections, Blackett Laboratory, Imperial College, London, during the 
final stages of preparing this paper. 

References 

Dalton B J 1982 J. Phys. A:  Math. Gen. 15 2157-76 
Davis P 1980 Honours thesis University of Queensland (unpublished) 
Knight P L 1977 Opt. Commun. 22 173-7 


